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ABSTRACT Breast cancer is a type of cancer that has risen to be the second cause of death among women.
Classification of breast tissues into normal, benign, or malignant depends on the presence of abnormalities
like microcalcifications, masses, architectural distortions, and asymmetries. Architectural distortion (AD) is
subtle in detection with no association with masses but shows the abnormal arrangement of tissue strands,
often in a radial, spiculation, or random pattern. It is widely rated as the third symptom of breast cancer which
is the most commonly missed abnormality. Most computational approaches characterizing abnormalities
in breast images often concentrate on the detection of microcalcification and masses with architectural
distortions appearing as a secondary finding. The subtle nature and a minimal occurrence of architectural
distortions may seem to complicate computational approaches for its detection. As a result, little research
interest has been recorded in this area. It is widely reported that some cases of recent breast cancer are
wrongly diagnosed due to the omission in detecting the presence of architectural distortion at the early
stage of the disease. However, we discovered that most computational solutions to early detection of breast
cancer are focused mainly on detecting other abnormalities such as masses and microcalcification, which
are some evidence of the advanced stage of the disease. To emphasise the little efforts channeled towards
detection of AD compared to other abnormalities, this article aims to detail the review of such studies in
the last decade. To the best of our knowledge, this study presents the first review which focuses on the
detection of architectural distortion (AD) from mammographic images. Furthermore, this article presents a
comprehensive review of approaches, advances, and challenges on the computational methods for detecting
AD,with the sole aim of advancing the use of deep learningmodels in detectingAD.Moreover, a comparative
study of performance analyses of articles surveyed in this article is investigated. Our findings revealed that
about 70% of the existing literature adopted Gabor Filters, while just less than 10% leveraged on the state-of-
the-art performances recorded in computer vision and deep learning, in building outstanding computational
models for the detection of AD. The current study also discovered that using a deep learning approach, such
as the convolution neural network (CNN) method, can yield a significant increase in performance for the
task of detection of architectural distortions. This assertion is based on literature results obtained using the
CNN, which generates an accuracy of 99.4% compared to the use of Gabor filters method, which accounts
for 95% accuracy.

INDEX TERMS Convolutional neural network, CNN, breast cancer, deep learning, Gabor filters,
mammography.

I. INTRODUCTION
Cancer is the uncontrolled growth and spread of cells. Breast
cancer is a type of cancer that has risen to be the second
cause of death among women. A fundamental characteristic
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of all forms of cancer is that the earlier they are detected
and attended to, the easier they can be cured. In other words,
if cancer is detected early, within a comprehensive cancer
control plan, a significant number of cancer patients can
be cured or have their lives prolonged significantly. This is
because the growth rate of the affected cells can be expo-
nential [1]. The Cancer Health Center (CHC) noted that most
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cases of cancer are detected and diagnosed after a tumor can
be felt or when other symptoms have developed [2]. Breast
cancer has the second highest mortality rate in women next
to lung cancer and is the most common type of cancer in
140 countries of a total of 182 evaluated nations [3]. The
US prediction on breast cancer towards 2019 revealed that
about 268,600 new cases of invasive breast cancer would be
diagnosed, 62,930 new cases of carcinoma in situ would be
diagnosed, and 41,760 women would die from breast cancer
[4]. Although these figures may appear to mirror what is
obtainable in most developed economies, research has also
shown that almost 50% of breast cancer cases and 58%
of deaths occur in less developed countries. The increasing
mortality rate arising from breast cancer is mostly due to the
lack of early detection of the disease as over 33% and 81%
of the population in ages 30-49 and 30-59 accounts for the
incidences, respectively [5], [6], [9].

Breast cancer images are presented as mammogra-
phy, magnetic resonance imaging (MRI), ultrasound (US),
tomosynthesis (3D mammography), xeromammography
(though no longer used), and galactography. Breast cancer
detection using these images often presents abnormalities
like architectural distortions, microcalcifications, asymme-
tries, and solid masses. Some of these imaging media
have served as a means for breast cancer screening, in an
attempt to diagnose the disease before symptoms begin to
appear. Mammography is a low-dose x-ray imaging widely
adopted for screening breast cancer in women. This imag-
ing allows for early detection of breast cancer when it is
in the impalpable or preclinical phase. The use of mam-
mography has reduced the rate of diagnosis of advances in
cases of breast cancer. Besides this, early detection of the
disease has made it possible to make the treatment effec-
tive and localized to a region where the tumor is found.
Therefore, this has reduced the mortality rate resulting from
breast cancer. Mammography, especially the 3D mammog-
raphy, can detect architectural distortions in breast images
effectively.

Architectural distortion (AD) is the third most common
appearance of non-palpable breast cancer, subtle with a vari-
able presentation, and has no association with visible masses,
but shows the abnormal arrangement of tissue strands, often
in a radial, spiculated or random pattern. It can be caused
by benign lesions such as post-surgical scar and radial scar
as well as malignant lesions, such as invasive carcinoma
AD. The invasive carcinoma AD accounts for an estimate
of between 12% - 45% of missed breast cancer in mam-
mography, and it would often present itself as a secondary
finding associated with a primary outcome such as masses or
asymmetries [8]. Architectural distortions or AD are usually
discovered in retrospect and only account for about 6% of
screening that detects cancers. This is often the basis for its
neglect in computational studies on the characterization of
abnormalities in breast images. However, the detection of
AD is important for ruling out possible potentially malignant
lesions in the breast. Still, due to its subtlety, it is often

missed on the screening mammography [9]. Similarly, AD is
a mammographic finding associated with a high positive
predictive value for malignancy in both screening and diag-
nostic mammography, between 10%–67% and 60%–83%
respectively [10], [11].

Computational solutions such as the computer aided
detection (CAD) systems have proven to be relevant in reduc-
ing observational oversights and false positive rates result-
ing from a wrong interpretation of medical images [12].
CADs have been applied specifically to the task of charac-
terization of abnormalities (e.g. architectural distortions) in
breast images. For instance, approaches like Gabor Filter,
mathematical models, fuzzy logic, 2D Fourier transformation
method and deep learning have been applied to this task.
However, we discovered that deep learning models which
are the most evolving in terms of classification performance
accuracy are yet to gain the attention of researchers in
exploiting it for classification of AD. Deep learning models
have achieved interesting results through their state-of-the-
art model implementations aimed at detecting microcalci-
fications and solid masses. The deep learning models are
based on the depth of layers which can extract features from
images at multiple levels of abstraction [13]. An example
of deep learning model is the convolutional neural network
(CNN). The layers are convolutional layer, pooling layer, and
fully connected (fc) layer [14]. Variation of hyperparameters
(e.g depth of model) in such models has produced different
image detection-based CNN architectures, some of which
are CiFarNet [15], AlexNet [16], GoogLeNet or Inception
v1 [17], Inception v3 [18], Inception v4 [19], Xception [20],
ResNeXt-50 [21], ResNet [22], VGG [23], and LeNet [24],
respectively. The CNN is widely deployed for the task of
characterization of abnormalities in breast images, although
it is scantily applied to the task of detection of architec-
tural distortions. Notwithstanding, some of those architec-
tures have achieved excellent performances in the detection of
architectural distortions [25], and it continues to attract more
research interests [26]–[28]. Because our study promotes the
use of deep learning in advancing early diagnosis of breast
cancer through the detection of AD, we devoted Section 3.3 to
presenting an overview of CNN.

The objective of this article is to present computational
studies on the detection of architectural distortion within the
last decade, from 2009 to 2020. Even though our primary
focus is on the existing studies related to AD, we also high-
light some studies whichmajored on other abnormalities such
as masses, microcalcifications, and asymmetries. Through
this multi-dimensional research perspective, we believe the
current study will provide researchers with a one-stop point
for comparing trends in computational approaches and also
research efforts aimed towards the detection of breast cancer.
In addition to the above objectives, we present some dis-
cussions on image preprocessing techniques usually accom-
panied with feature detection and classification techniques
on architectural distortion. This will also allow interested
readers to observe the complete methods (from preprocessing
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to detection and then classification) for processing images
containing architectural distortion.

Meanwhile, it is interesting to note that similar survey
works [122] that presented a review of studies on computer-
aided detection or diagnosis (CAD) techniques for detection
of breast cancer do exist in the literature. However, their focus
is mainly on the detection of calcifications, masses, architec-
tural distortion, and detection of bilateral asymmetry. As far
as we know, no study has focused solely on detailing the
review of studies on the detection of architectural distortion.
The current research was carried out through an exhaustive
search of academic online digital archives of publications
consisting of conferences, journal articles, and books. In addi-
tion, the technical contributions of this article are as follows:

• A state-of-the-art review of major studies on digital
breast image preprocessing techniques. This is in addi-
tion to a review of studies on the characterization of
masses, microcalcification, asymmetries, and architec-
tural distortion.

• A presentation of a decade long systematic review of
techniques of studies focused on addressing the detec-
tion of architectural distortions using computational
methods.

• A presentation of significant findings from surveyed
studies to avail researchers the opportunities available
in the focused area of research interest.

• An outline of advances and critical challenges in the
detection of AD.

The remainder of this article is organized as fol-
lows: Section 2 is focused on reviewing related literature;
Section 3 provides the reader with an overview of basic
concepts concerning digital breast image preprocessing tech-
niques and other focused study areas; Section 4 presents
the datasets and approaches of the studies reviewed;
Section 5 outlines themetrics, results of computational exper-
iments, and comparison of performances of reviewed papers;
Section 6 discusses our findings; and finally, we conclude the
study in Section 7.

II. RELATED WORKS
This section presents a review on some related works, prepro-
cessing of medical images and on models applied to the task
of characterization of abnormalities in digital images.

A. IMAGE PREPROCESSING: SEGMENTATION AND
CROPPING
In this sub-section, we review recent literature in the areas of
image cropping, particularly the extraction of the region of
interests from whole size digital mammography. Our inter-
est in reviewing this technique is motivated by the need to
establish the fact that the characterization of abnormalities
in down-sampled high resolution images is unlikely to be
successful for mammography [29]. Although the manual
cropping method has been widely adopted [21], this study
focused on the automated method.

Image cropping operation is aimed at improving the qual-
ity of an image by removing distracting content and also
adding aesthetics. Different approaches exist for achieving
this task. These can be largely categorized into aesthetic-
based, ranking-based and attention-based approaches. Often-
times, these approaches apply techniques such as machine
learning, deep learning, visual composition and boundary
simplicity, Gabor filters, segmentation, sparse coding, and
saliency-based. The use of the deep learning model technique
has outperformed recent state-of-the-art methods. A good
example is a work in [30] which leveraged on geometrical
properties of edge features based on an energy model to
extract distorted abnormal structures associated with archi-
tectural distortions in suspicious regions. In addition to geo-
metrical properties, contours obtained from amodified Single
Univalue Segment Assimilating Nucleus filtered mammo-
gram were also used in the extraction procedure. Literature
is replete with different ROI extraction techniques which are
not based on deep learning techniques [31]–[34]. Similarly,
Xiang, et al. [35] claimed that they were able to automate
the extraction of ROIs even from noisy medical images
using an extraction algorithm with statistical moments. The
approach estimated an optimal threshold value automatically
using statistical moments through histogram decomposition
technique. The result of the proposed algorithm and method
showed that it outperformed similar techniques while demon-
strating robustness.

Renukalatha and Suresh [36] framed image cropping as a
regression problem to bounding boxes and associated visual
quality scores to it. They then applied the CNN model
which is capable of accepting the whole image of different
sizes to predict bounding boxes and associated scores from
full images. Experimentation of their proposed framework
showed that enhancement of about 10%was obtained in com-
parison to other contemporary and related works. Similarly,
Rahman, et al. [37] adopted the use of a deep learning model
in combination with Gaussian filter and image scaling and
cropping method to keep the better presentation of the visual
object for extraction of ROIs. The approach was optimized to
achieve a quality image and low computational complexity.
They trained a large dataset of images to get a saliency
map from the input image using graph-based segmentation
and gray level adjustment to enhance and extract a more
accurate and clear saliency map. Their proposed framework
was able to extract optimum rectangle for identification of
ROIs, by using the saliency map with minimum and maxi-
mum rectangular windows. The results of experimentation,
carried out with Matlab and Caffe framework, revealed that
the framework is not only fast, but also better for image
cropping.

Contrary to the use of saliency map in the extraction of
ROIs as discussed in [37], the research in [38] proved that the
saliency map approach was limited by its false foreground
objects. They proposed the use of common object discov-
ery (COD) algorithms tomine the underlying canonical query
objects from the resultant image collection and adopt the
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detected object regions of interest (ROIs) as a guide for
image cropping. The use of COD was further enhanced
through text-based search rankings. They concluded present-
ing experimental results which showed that the use of COD
in combination with text-based search rankings approach
outperformed down-sampling and saliency-based methods
on both object localization accuracy and general thumbnail
quality.

The use of Gabor filters variants for image analysis such
as feature extraction, image segmentation and others is
widespread. This is evidenced by the application of curva-
ture Gabor filter in human authentication [39]; extraction of
features of masses from mammography using Gabor filter
and Cuckoo search algorithm [40]; extraction of ROIs in
palmprint recognition task using the combination of Gabor
filters and texture-based features [41], [42]; and other related
uses of Gabor filter in [43]. However, in this category of
Gabor filter application, the work which is of much inter-
est to us is that which is proposed by Banik, et al. [44].
The authors in [44] investigated the detection of architec-
tural distortions in mammography of interval cancer cases
taken prior to the diagnosis of breast cancer. To identify
and extract the ROIs, they combined Gabor filter with phase
portrait analysis, fractal dimension, and texture analysis. A
total of 4212 regions of interest (ROIs) were automatically
obtained from 106 prior mammography images of 56 interval
cancer cases. This includes 262 ROIs related to architectural
distortions, and 52 prior mammography images of 13 nor-
mal cases. The result of experimentation showed that AUC
was 0.75 with the Bayesian classifier, 0.71 with Fisher lin-
ear discriminant analysis, and 0.76 with an artificial neural
network (ANN) based on radial basis functions (RBF), and
attained a sensitivity of 0.80 at 10.5 false positives per image.

Plotting and combining histograms of blocks in regions
of an image is another effective technique that has
been employed in image processing for identification of
ROIs. In [45], Boss, et al. proposed histogram based
8-neighborhood connected component labeling method for
breast region extraction and removal of the pectoral muscle,
and they were able to identify the breast region more accu-
rately. Similarly, Agwu and Ohagwu [46] used histogram-
based approach for extraction of ROIs fromCT images. Apart
from its application to medical image processing, the his-
togram technique in its various forms has been used for
extraction of ROIs as in [47]–[49].

Another technique for extraction of ROIs from images is
the use of threshold techniques. This approach has also gained
research attention, as used in [50]–[55]. Most interestingly,
the work by Ragab, et al. [56] and Sheba and Gladston
Raj [57] appear to be interesting in their performances and
approaches. [56], though, applied a manual method, and
thereafter used the technique of threshold and region based
for extraction ROIs. The method achieved the extraction pro-
cess by first determining the tumor region using a threshold
value. After some trials, they modified the threshold to a
specific value (76) for all the images regardless of the size

of the tumor. Then, the biggest area within this threshold
along the image was determined, and the tumor was cropped
automatically. Meanwhile, in Sheba and Gladston Raj [57],
the regions of interest (ROI) were automatically detected
and segmented from mammography using global thresh-
olding, Otsu’s method and morphological operations. The
extracted ROIs were applied for the classification task, which
was based on Feed-forward artificial neural networks using
backpropagation to distinguish between healthy, benign and
malignant breast parenchyma in digital mammography. Also,
Pandey, et al. [58] applied the use of thresholding technique
and convolution method or extraction of ROIs on magnetic
resonance images (MRI).

Segmentation of the breast region is the first and one of
the most important preprocessing steps of the mammogram
analysis. This allows focusing on ROI in cancer images
by detecting architectural distortion at the border. In [124]
the authors applied texture filter method to the problem of
segmentation of the breast region. Lastly, for this section,
we present the work of de Vos, et al. [59] which employed the
use of deep learning for localization and extraction of ROIs
from images. The convolutional neural network (ConvNet)
was trained to detect the presence of the anatomical structure
of interest in axial, coronal, and sagittal slices extracted from
a 3D image. The approach created 3D bounding boxes by
combining the output of the ConvNet in all slices. Their local-
ization method was compared with a manual method using
the distances between automatically and manually defined
reference bounding box centroids and walls. Several other
works have adapted deep learning for the tasks for ROI
extraction [60]–[64], and also using a high pass isotropic filter
[147], and others are [146] and [124].

B. CHARACTERIZATION OF ABNORMALITIES IN DIGITAL
BREAST IMAGES
Abnormalities in breast tissues are mostly of four types,
namely: malignant masses, calcification, architectural dis-
tortions, and asymmetries. Although this study is aimed
at reviewing studies focused on detection of the architec-
tural distortions, we felt it necessary to present review stud-
ies aimed at other related abnormalities. Although different
approaches have been adopted for the detection of breast
cancer using patient records [80]–[82], this section focuses
on studies detecting abnormalities in breast images.

1) MALIGNANT MASSES
We first present literature which does not use deep learning
models for the task of detecting abnormalities in mammog-
raphy. The work in [3], for instance, differs from the popu-
lar opinion of using deep learning models. In the research,
feature extraction was based on multi-resolution wavelets
while classification was performed by using SVM and ELM
networks with modified kernels. By using multi-resolution,
the authors were able to increase the texture and shape fea-
tures extracted to improve the task of detection and classifica-
tion. Experimentation of the approach was carried out using
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355 images of fatty breast tissue of IRMA database, with
233 normal instances (no lesion), 72 benign, and 83 malig-
nant cases, and attained an accuracy of 94.11%.

In [29], the authors extracted features from ROIs using
speed-up robust features (SURF) and local binary pattern
variance (LBPV) descriptors. The features were then rep-
resented as deep invariant features (DIFs) which in turn
were constructed in supervised and unsupervised fashion
through multilayer deep-learning architecture. The author
experimented with a dataset of 600 region-of-interest (ROI)
masses, including 300 benign and 300 malignant masses,
obtained from two publicly available data sources. Results of
the performance of DeepCAD obtained a sensitivity of 92%,
a specificity of 84.2%, and accuracy of 91.5% and AUC
of 0.91.

Using already fine-tuned or trained architecture helps to
fast track the process of adapting the architecture for different
problems. This was demonstrated in [56], which adapted
AlexNet to segment whole images and then classify the
extracted ROI. The authors modified AlexNet to classify
two classes instead of 1,000 classes. This they achieved by
introducing SVM classifier at only the last fully connected
layer. Meanwhile, the approach used a segmentation tech-
nique (threshold and region based) to automate the process
of extraction ROIs. The approach for the classification was
based on SVM (as a classifier) and mammography images
from the digital database for screening mammography
(DDSM) and the Curated Breast Imaging Subset of DDSM
(CBIS-DDSM). The study applied the trained DCNN on
manually cropped inputs and successfully classified benign
and malignant mass tumors obtaining an accuracy of 71.01%.
However, when the ROIs were automatically extracted using
segmentation techniques, the model achieved a performance
of 0.88 (88%) for the area under the curve (AUC) base on the
DDSM dataset. Moreover, when using the samples obtained
from the CBIS-DDSM, the accuracy of the DCNN increased
to 73.6%. Consequently, the SVM accuracy became 87.2%
with an AUC equaling to 0.94 (94%).

Similarly, Levy and Jain [66] investigated the perfor-
mance of the following architectures: AlexNet, GoogLeNet
and a shallow CNN architecture. The three models were
used in the classification of images as malignant or benign.
To circumvent the challenge of overfitting, they used the
techniques of transfer learning, batch normalization, careful
preprocessing and data augmentation. For both the AlexNet
and GoogLeNet, the researchers used the same base archi-
tecture as the original works but replaced the last fully-
connected (FC) layer to output classes. The shallow CNN
proposed takes a 224 × 224 × 3 image as input, and it
consists of 3 convolutional blocks composed of 3 × 3,
three fully connected layers, and soft-max layer. Further-
more, they employed ReLU activation functions, Xavier
weight initialization, and the Adam [15] update rule with
a base learning rate of 10−3and batch size 64. The best
model presented a result of 0.934 for recall at 0.924 for
precision.

Jung, et al. [67] proposed the use of RetinaNet for detec-
tion of masses in mammography by adopting pre-trained
weights (i.e., using weights pre-trained on GURO, training
and testing on INbreast). This, they claimed, demonstrates
that using weights pre-trained on datasets achieves a sim-
ilar performance to directly using datasets in the training
phase. Experimental setups using the public dataset INbreast
and the in-house dataset GURO showed that their model
obtained an outstanding performance of an average number
of false positives of 0.34, and 0.03 when the confidence
score is 0.95 in INbreast and GURO respectively. Likewise,
Agarwal, et al. [68] employed the use of transfer learning to
propose a patch-based CNN method for automated masses
detection in full-field digital mammography (FFDM). They
also investigated the performances of VGG16, ResNet50, and
InceptionV3 architectures on the same dataset while apply-
ing the transfer learning technique to uncover the benefit
of domain adaptation between the CBIS-DDSM (digitized)
and INbreast (digital) datasets using the InceptionV3 CNN.
Their experimentation showed that the InceptionV3 obtained
the best performance for classifying the masses and non-
mass breast region for CBIS-DDSM. Results showed that
the transfer learning from CBIS-DDSM obtained a sub-
stantially higher performance with the best true positive
rate (TPR) of 0.98 at 1.67 false positives per image (FPI),
compared with transfer learning from ImageNet with TPR
of 0.91 at 2.1 FPI.

Another research worth considering is the work of
Arevalo, et al. [69] which was able to demonstrate that there
is potential superiority when a deep learning based classifier
is used to distinguish malignant and benign breast masses
without segmenting the lesions and extracting the pre-defined
image features. [70] also showed a performance of their
learning model to have attained area under the ROC curve
of 86%. Other related studies can be found in [172]–[174].

2) CALCIFICATION
The work in [71] combined the CC and MLOmammography
views differentiating between malignant and benign tumors.
They implemented a deep-learning classification method that
is based on two view-level decisions, implemented by two
neural networks, followed by a single-neuron layer that com-
bines the view level decisions into a global decision that
mimics the biopsy results. The model exploited the detection
of features of clustered breast microcalcifications to classify
tumors into benign and malignant categories. In related work,
Sert, et al. [72] adapted a CNN model to the task of breast
tumor classification as benign or malignant based on the
detection of features of microcalcifications. The approach
investigated the benefit of employing various preprocessing
methods such as contrast scaling, dilation, cropping, deci-
sion fusion using an ensemble of networks, and with CNN
model. Experimentation results showed that preprocessing
poses great importance on the classification performance
and obtained 94.0% and 95.0% for recall and precision
respectively.

148648 VOLUME 8, 2020



O. N. Oyelade, A. E. Ezugwu: State-of-the-Art Survey on Deep Learning Methods for Detection of AD

In most of the learning models reviewed so far,
we observed that patches (dynamic or fixed size) from whole
images served as inputs. Xi, et al. [65] successfully trained
their model which accepts patches as input, and they then
adapted the model on whole images. The models investigated
were VGGNet and ResNet, with the later demonstrating
the most appreciable accuracy at 92.53% in classifications.
Meanwhile, Murali and Dinesh [73] employed a deep Convo-
lutional Neural Network (CNN) and Random forest classifier
for the classification of ROIs with malignant masses and
microcalcifications. The AUC of CNN was 0.87, which was
higher than the mean AUC of the radiologists (0.84), though
the difference was not significant. On the other hand, [74],
[26] circumvented the use of deep learning by adopting
the use of wavelet decomposition. Although our research
is focused on CNN models, their work is, however, worth
mentioning and may interest others.

3) ARCHITECTURAL DISTORTION
In [75], the authors approached their task of feature extraction
on inputs with architectural distortions and spiculated masses
using Gabor filters and PPlanes. Furthermore, SVM and
MLP were employed for the task of classification using the
Mini-MIAS and DDSM datasets. Results showed that they
achieved 90% sensitivity, 86% specificity in distinguishing
AD from the normal breast tissue and 93% sensitivity and
88% specificity in classifying speculated masses; also, SVM
classifiers achieved 96% sensitivity with 9.6 false positives
per image in detection of spiculated masses and 97% sensitiv-
ity with 6.6 false positives per image while detecting architec-
tural distortions. In related work, Rangayyan, et al. [76] also
demonstrated the methods for the detection of architectural
distortions in prior mammography of interval cancer cases
based on analysis of the orientation of breast tissue patterns
in mammography. This was achieved by applying Gabor
filters and phase portraits to detect node-like sites of radiating
or intersecting tissue patterns. Results obtained achieved a
sensitivity of 80% at about five false positives per patient.

Others have leveraged the benefits of R-CNN as in [9] who
introduced the detection of architectural distortions using
a supervised pre-trained region-based network (R-CNN).
Experimentation was based on the DDSM dataset, and results
showed that they obtained over 80% sensitivity and speci-
ficity, and yields 0.46 false-positives per image at 83% true-
positive rate. Similarly, Bakalo, et al. [77] demonstrated a
novel network which combined two learning branches with
region-level classification and region ranking in weakly and
semi-supervised settings. Their results for weakly supervised
learning showed an improvement of 4% in AUC, 10-17%
in partial AUC and 8-15% in specificity at 0.85 sensitiv-
ity. Hang, et al. [78] applied GlimpseNet to autonomously
extracts ROIs and then classify them to obtain the result that
gained 4.1% increase inaccuracy.

Recently, there has been a surge in the use of basic CNN
models in the characterization of architectural distortions
from mammography. Qiu, et al. [79] proposed a framework

using a combination of deep Convolutional Neural Network
(CNN). The model is an 8 layer deep learning network
that involves 3 pairs of convolution-max-pooling layers for
automatic feature extraction and a multiple layer percep-
tron (MLP) classifier for feature categorization to process
ROIs. The network contained 20, 10, and 5 feature maps of
convolution layers. The MLP classifier is composed of one
hidden layer and one logistic regression layer. The results
of their experimentation achieved an AUC of 0.696±0.044,
0.802±0.037, 0.836±0.036, and 0.822±0.035 for fold 1 to
4 testing datasets respectively, with the overall AUC of the
entire dataset 0.790±0.019.

Similarly, Jiao, et al. [80] also proposed a deep feature
based framework combining intensity information for breast
masses classification task. In related work, Bakkouri and
Afdel [81] proposed a novel discriminative objective for
supervised feature deep learning approach focused on the
classification of tumors in mammography as malignant or
benign, using Softmax layer as a classifier. The proposed net-
work was enhanced with a scaling process based on Gaussian
pyramids for obtaining regions of interest with normalized
size. The DDSM and BCDR dataset were used in addition
to data augmentation (geometric transformation) technique.
The result of their experiments showed that they obtained an
accuracy of 97.28%.

Another deep learning model was used by
Dubrovina, et al. [82], which was a novel supervised deep
learning-based framework for region classification into
semantically coherent tissues. Their research improvised data
for training by training the CNN in an overlapping patch-
wise manner and adapting the convolutional neural network
(CNN) to learn discriminative features automatically. The
experimental result showed that they obtained an average dice
coefficient of 0.71.

Samala, et al. [83] proposed a multi-task transfer learning
DCNN to translate knowledge from non-medical images to
medical diagnostic tasks through supervised multi-task trans-
fer learning, digitized screen-film mammography (SFMs)
and digital mammography (DMs) which were used to train
the DCNN, which was then tested on SFMs. Experimen-
tation was done with Institutional Review Board (IRB)
approval, SFMs and DMs were collected from patient
files, and additional SFMs were obtained from the Digital
Database for Screening Mammography. The data set con-
sisted of 2242 views with 2454 masses (1057 malignant,
1397 benign).

Mammogram-based CNN based models include the work
of Antropova, et al. [84] which exploited the efficiency
of pre-trained convolutional neural networks (CNNs) in
a combination of pre-existing handcrafted features. These
features were combined with low- to mid-level features
using a pretrained CNN. The dynamic contrast enhanced-
MRI [690 cases], full-field digital mammography [245
cases], and ultrasound [1125 cases] datasets were used
for experimentation. The research obtained the follow-
ing results: DCE-MRI [AUC = 0.89, se = 0.01], FFDM
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[AUC= 0.86, se= 0.01)], and ultrasound [AUC= 0.90, se=
0.01)]). Another use of a CNN model for classification of
breast masses lesions aided with end-to-end learning process
was proposed by Chougrad, et al. [85].

In [86], the authors applied convolutional neural network-
discrete wavelet (CNN-DW) and convolutional neural
network-curvelet transform (CNN-CT) for the purpose of
detecting architectural distortion. The study also filtered the
input using contrast limited adaptive histogram equaliza-
tion (CLAHE) and then compared Softmax and support SVM
for classification purpose. Results showed that CNN-DW
and CNN-CT had achieved an accuracy rate of 81.83% and
83.74%, respectively. Jiang, et al. [87] also explored the
possibility of combining the technique of transfer learning
with GoogLeNet and AlexNet pre-trained on a large-scale
visual database. Theresults of their research demonstrated
that GoogLeNet reached an AUC of 0.88 outperforming
AlexNet, which stood at AUC of 0.8.

Finally, here are some other related works which adopted
other similar techniques: Sharma and Preet [88] applied Con-
volution Neural Network as a classifier on the mammogram
images to enhance the accuracy rate of CAD. Performance
of the different classifiers was measured on receiver operat-
ing characteristic. Experimentation results showed that the
model attained an accuracy of 73%, with 71.5% sensitiv-
ity and 73.5% specificity for dense tissue, and an accu-
racy of 79.23%, 73.25% sensitivity and 74.5% specificity
was achieved for fatty tissue. Similarly, Teare, et al. [89]
presented two novel techniques (genetic search of image
enhancement methods with CLAHE and DCNN) to address
inherent challenges in the application of machine learning
to the domain of mammography. The research also utilized
dual deep convolutional neural networks at different scales
for classification of full mammogram images and derivative
patches combined with a random forest gating. The result
obtained showed a specificity of 0.91 and a specificity of
0.80. Teare, et al’s. [89] study was based on wavelet con-
volution neural network for detection of spiculated findings
in low-contrast noisy mammography, such as architectural
distortions and spiculated masses. The dataset used for exper-
imentation consisted of CBIS-DDSM and reached an accu-
racy of over 85% for architectural distortions and -88% for
spiculated masses. In [27], the authors proposed a detection
scheme composed of two separate channels, each of them
being dedicated to the detection of one of the target radiologi-
cal signs for detection of masses and architectural distortions
in DBT datasets. Lastly, Kamra, et al. [28] employed the
use of texture models using support vector machine (SVM)
classifier for texture classification of architectural distortions.
The databases used were IRMA version of a digital database
for screening mammogram (DDSM) and Mammographic
Image Analysis Society (MIAS). Results showed an accuracy
of 92.94 % using DDSM for fixed-size ROIs and 95.34 % for
MIAS dataset.

The study in [121] aimed at detecting spiculated lesions
and architectural distortions in digital breast tomosynthesis

using a fast method and contrario modeling. The fast algo-
rithm was implemented to significantly reduce the compu-
tational cost. Results obtained when applied to 38 breasts
(10 containing a lesion), showed a sensitivity of 0.8 at
1.68 false positive per breast. The authors in [123] applied
the discrete wavelet transform (DWT) on datasets consisting
of 19 architectural distortions and 19 normal mammograms
to detect breast architectural distortion. Using SVM as a clas-
sifier, the authors confirmed that it was effective by yielding
an accuracy of 92.1%, a sensitivity of 89.5%, and a specificity
of 94.7%.

Samulski and Karssemeijer in [125] proposed a multiview
(e.g. MLO and CC views) CAD system based on Case-Based
reasoning or learning method. They improved an already
existing single-view lesion detection system and applied a
correspondence classifier to detect malignant masses and
architectural distortions. Four hundred and fifty-four mam-
mograms consisting of four views with a malignant region
were applied to their method. The research output result
of mean sensitivity increased by 4.7% in the range of
0.01-0.5 false positives per image.

Banik, et al. [127] adopted the methods of Gabor fil-
ters, phase portrait analysis, angular spread of power, fractal
analysis, Law’s texture energy measures and Haralick’s tex-
ture features. The study reported that 4224 ROIs, consisting
of 301 true-positive, were automatically obtained from 106
prior mammograms of 56 interval-cancers. The images were
applied to their methods for the detection of architectural dis-
tortion in prior mammograms of interval-cancer. The authors
revealed that they obtained AUC of 0.76 with the Bayesian
classifier, 0.75 with Fisher linear discriminant analysis, and
0.78 with a single-layer feed-forward neural network. Results
showed that they obtained sensitivities of 0.80 and 0.90 at
5.8 and 8.1 false positives per image. In another study [131],
the authors applied a similar approach. They, however, mod-
eled the input as RÃ
nyi entropy of angular histograms
composed with the Gabor magnitude response, angle, coher-
ence, orientation strength, and the angular spread of power
in the Fourier spectrum. In [26], Biswas and Mukherjee used
a two-layer architecture generative model for extraction of
distinctive textures for recognizing architectural distortion.
The model was successfully applied to MIAS and DDSM
datasets to obtain an impressive performance.

The authors [128] presented some methods for the detec-
tion of oriented features which were then applied to exploit
the presence of oriented features in mammography. Their
approach consisted of low- and high-level analysis. The low-
level analysis includes the detection of oriented features in
images, while high-level analysis relates to the discovery of
patterns in the orientation field. The presence of oriented
features in images often conveys important information about
the scene or the objects contained therein. The study applied
the phase portrait method to the detection of architectural
distortion in mammograms. Torabi, et al., [129] applied
Wavelet packet analysis on the two-dimensional histogram
matrices of mammography to generate the filter banks to
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extract statistical features - skewness and kurtosis. Using
the 5-fold cross-validation protocol, the authors claimed that
their method improved the detection accuracy of architectural
distortion. There is a proliferation of the use of Gabor filters
method for the detection of architectural distortion as also
seen in [132]. The authors adopted the method for detection
of the orientation of the breast tissue at each pixel, the breast
boundary, the nipple, and the pectoral muscle. Furthermore,
they used the measure of coherence to find the angular devi-
ation of the oriented structures in order to detect AD. Their
technique yielded a sensitivity of 80% which was obtained at
10.3 false positives/image.

In a related study, the same authors in [133] used an
approach that relies on the use of Gabor filters and phase
portrait analysis, and measures of spicularity and angular
dispersion of the patterns in automatically detected ROIs.
To detect the presence of AD, the authors used the method
of inclusion of an index of convergence of spicules which
is computed from the Gabor magnitude and coherence using
the Gabor angle response. After that, they measured radially
weighted difference and angle-weighted difference measures
of the intensity, Gabor magnitude, and Gabor angle response.
In addition, they computed the angle-weighted difference
in entropy of spicules computed from the intensity, Gabor
magnitude, and Gabor angle response. Using pattern clas-
sification, they obtained AUC of 0.76 with an ANN based
on radial basis functions, a sensitivity of 0.90 at 6.3 false
positives per patient. Deviating from the conventional use of
Gabor Filters, authors in [134] used Gaussian (DoG)-based
filter method in conjunction with a thresholding technique.
Their methods were able to effectively detect AD and also
reduce the number of false positives.

Chang, et al., [135] proposed an image enhancement
method and used the Laplacian of Gaussian (LoG) filter for
feature extraction in digital images. Meanwhile, they exam-
ined the correlation between histological grade and stellate
feature on 3D ultrasound imaging. Chakraborty, et al. [136]
proposed the use of Gabor filters and statistical measures of
the orientation for the detection of architectural distortion.
They further applied two types of co-occurrence matrices
and computed Haralick’s 14 texture features to estimate the
joint occurrence of the angles of oriented structures. Detec-
tion of ROIs was carried out by using Gabor filters and
phase portrait analysis. By using an artificial neural network
for classification, and the leave-one-image-out approach for
cross-validation, their approach yielded AUC of 0.77, a sen-
sitivity of 80% at 5.4 false positives per image. Similarly,
in [137] the authors also used statistical measures of ori-
ented patterns in conjunction with Gabor filters and phase
portrait analysis. The result obtained revealed an AUC of
0.76, a sensitivity of 80% at 4.2 false positives per patient.
Using a different approach, the study in [138] applied Mono-
genic Binary Coding (MBC) for features extraction by the
analysis of oriented textures. They then adopted the Nearest
Neighbor classifier to obtain 91.25% in terms of the average
accuracy.

On the other hand, authors in [139] used Otsu technique
which was performed for segmentation and then applied
contoured transform and the phase portrait methods for fea-
ture extraction. In addition to image preprocessing, top-hat
processing and concentration of white spaces in the sliding
window also applied. Similar to the work in [123], the study
presented in [140] also applied wavelet transform, phase
portrait analysis, and angular spread of power analysis to
improve the accuracy of detection of AD.Meanwhile filtering
using morphological filtering and Otsu threshold method was
also applied for image preprocessing. In addition to using
Gabor filters and phase portrait analysis, this study [158]
also applied Multiple Twin Bound Support Vector Machines
Recursive Feature Elimination (MTWSVM-RFE), and Twin
bounded Support Vector Machine (TWSVM) for classifica-
tion purposes. Similarly, [164] also applied Gabor filters and
phase portrait analysis, Multiple Twin Bound Support Vector
Machines Recursive Feature Elimination (MTBSVM-RFE)
and Twin bounded Support Vector Machine (TBSVM).

While adopting the popular use of Gabor filters, phase por-
trait analysis, authors in [141] were able to perform analysis
of the angular spread of power and fractal analysis. Applying
the neural network classifier, Bayesian classifier, and Fisher
linear discriminant analysis, the study yielded AUC of 0.76,
0.77 and 0.76, respectively. They also obtained sensitivities
of 0.80 and 0.90 at 5.7 and 8.8 false positives (FPs) per
image. Similarly, [151] used adaptive Gabor filter to detect
mammary gland structure in other to detect AD. In [144],
the authors used a measure of divergence of oriented pat-
terns in conjunction with the Gabor angle response; radially
weighted difference and angle-weighted difference (AWD)
measures of the intensity, Gabor magnitude, and Gabor
angle response. The proposed method obtained a sensitivity
of 0.80 at 5.3 false positives (FPs) per patient. The study
in [142] used a similar approach to [123], [140] although
they also attempted to compare the performance of SVM
and relevance vector machine (RVM). In a unique approach,
the authors in [143] proposed morphological processing for
easily detecting AD. Authors in [148] adapted Gaussian mix-
ture to model features extracted by the Curvelet coefficients
and Spiculated Lesion Filters in order to detect AD. By apply-
ing their approach to the DDSM and MIAS databases, they
obtained an accuracy of 92.78 %. In this [149] study, they
applied a straight line approximation of pectoral muscle
in addition to optimum thresholding to obtain an accuracy
of 86.67%.

In another work, the researcher exploited the extraction of
yields pixel by pixel vector maps using diffusion tensor imag-
ing (DTI) to track the mammary architectural elements [150].
The study in [152] proposed a novel method using direction
analysis of linear structures to detect AD. The determined
directions (0Â◦, 22.5Â◦, 45Â◦, 67.5Â◦, 90Â◦, 112.5Â◦,
135Â◦, and 157.5Â◦) were then used to calculate the isotropic
indexes to extract suspicious areas. In [153], Bandelets was
explored for the analysis of mammograms to detect the geo-
metric flow which indicates directions in which the image
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gray levels have regular variations. The authors claimed that
their approach outperformed Wavelets and Curvelets meth-
ods using Support Vector Machine (SVM). By using a differ-
ent approach in [154], the study revealed that the application
of multiscale statistical texture analysis allows for distin-
guishing between textural patterns of architectural distor-
tion and normal breast parenchyma. In addition, the authors
applied data-driven two-dimensional intrinsic mode func-
tions (IMF) layers to extract high-frequency oscillations of
the input. By using the nonlinear support vector machine
classifier, the approach obtained AUC of 0.88.

In [155], the authors proposed the extraction of fea-
tures using a sub-classes clustering based multi-task learning
method (SMTL). After that, a sparse representation based
classifier was used for the classification of AD or non-AD
[156]. Using textural patterns of AD surrounding tissue in
detecting the presence of AD, the authors first used BEMD
algorithm to extract ROIs. After that, statistical signatures of
IMF layers were computed further to identify the presence
of AD in the ROIs. In [157] the authors combined trans-
fer learning with automatic architectural distortion detection
method. The study in [159] applied the concept of graph
theory to denote the linear saliency in mammography, that
is, before applying eigenvectors from the adjacency matrix to
extract discriminant coefficients that represent graph nodes.
Using Support Vector Machine (SVM) classifier and mini-
MIAS and DDSM databases, their approach yielded AUC
0.93, accuracy rate of 89%, sensitivity 95%, and a specificity
of 93 %. In [160], the performances of Local Mapped Pat-
tern (LMP) were compared with Local Binary Pattern (LBP)
in conjunction with a multilayer perceptron neural network to
obtain an accuracy of 83%.

Also, the study in [161] attempted to compare the perfor-
mance of a multiscale fractal dimension (FD) measurements
with a single FD measurement. Their report showed that the
former outperformed the latter. The study carried out the
detection of AD by the application of a two-dimensional
empirical mode decomposition (2D-EMD) algorithm to gen-
erate a multiscale representation of the mammograms. After
that, they measured the fractal dimension from the multireso-
lution representation of the mammogram. Authors in [162]
proposed the combination of Dense convolutional neural
network (DenseNet) and the Squeeze-and-Excitation (SE)
block to achieve SE-DenseNet. Experimenting with BCDR
dataset, the approach yielded AUC was 0.984, and accuracy
was 0.982. Using a deep learning approach, authors in [170]
adapted a pre-trained VGG-16 network on ImageNet images
in combination with transfer learning technique to obtain
AUC = 0.89. Similarly, in [171], the study developed a deep
learning model for the detection of AD through detection
(Gabor filters) and aggregation (Faster-RCNN) in 2D and
3D, respectively. Their approach outperformed other similar
models by obtaining a mean true positive fraction (MTPF)
of 0.50 ± 0.04.

Other approaches include the detection of AD; the authors
in [163] exploited the fractal dimension and lacunarity.

The study in [165] attempted to optimize the use of seg-
mentation technique to reduce number input sent to the clas-
sifier in a bid to detect AD. More approaches are the use
of 3-dimensionality of the imaging modality [166], applica-
tion of Markov random fields along with watershed trans-
form, together with mathematical morphological operators
[167], context-based ensemble classifier approach [168],
combination of Local Binary Pattern (LBP) and SVM [169].
The SVM classifier classifies the image into malignant and
benign images. Some other approaches proposed for the
detection of architectural distortions and abnormal struc-
tures in mammographic images are the analysis of bilat-
eral and temporal cases using image registration methods
such as global and rigid transformation to local deformable
paradigms [125], [130].

III. PRELIMINARIES
In this section, brief preliminaries of basic concepts related
to the survey in this article are presented.

A. ARCHITECTURAL DISTORTION
Mammography is the most widely used method to screen
breast cancer. This X-ray film produced from the mam-
mography can be converted and stored as full-field digital
mammography (FFDM). FFDM are digital signals represent-
ing the actual X-ray film and are used in CADs operations
like deep learning models. Images from mammography are
typically viewed between two to four views, namely: cranial-
caudal (CC), medio-lateral (ML), latero-medial (LM), and
mediolateral-oblique (MLO) views. The CC view is a view
taken from above, ML is a view taken from the center of
the chest outward, LM view presents from the outer side
of the breast and towards the center of the chest, and MLO
view presents breast images from the upper-outer quadrant
[90]. Figures 1 - 4 present these four views of mammog-
raphy images. Research has proven that combining more
than one view in deep learning models has improved the
performance of such a model. This proposal will attempt to
gather and synthesize images from at least two views: CC and
MLO views.

Radiologists and CAD systems usually look out for
abnormalities in both the X-ray film and the FFDM. These
abnormalities may be classified as benign (tumors not con-
sidered cancerous) and malignant (tumors are cancerous),
and are differentiable from normal mammography as shown
in Figures 5-7. The benign tumors can have round or oval
shapes, while malignant tumors have a partially rounded
shapewith an irregular outline. Besides, themalignantmasses
will appear whiter than any tissue surrounding it [56]. The
four abnormalities that are presented with digital mammogra-
phy, namely: masses, calcifications, asymmetries, and archi-
tectural distortions are shown in Figures 8-11.

Architectural distortions usually present a subtle nature
in the mammogram. It typifies distortions of normal breast
architecture with no definite visible masses. This can be
detected from appearances of spiculations radiating from a
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FIGURE 1. Mediolateral oblique (MLO) view [91].

FIGURE 2. Craniocaudal (CC) view [91].

point, focal retraction, or straightening at the edges of the
parenchyma [10]. In a related study [98], the authors observed
the difference between architectural distortions caused by
benign and malignant tissues: benign causes of architectural
distortions include radial scars; complex sclerosing lesions;
sclerosing adenosis; fat necrosis; postprocedural change; and
rare speculated benign lesions, such as granular cell tumor
and breast fibromatosis. Malignant causes include breast
cancer and ductal carcinoma in situ. These distortions are
characterized by the abnormalities in Figure 12a - c. Archi-
tectural distortions on mammography present themselves
mostly in invasive breast cancers, namely invasive lobular
carcinoma (ILC) and invasive ductal carcinoma (IDC) and
represent about 5–10% and 70–90% of invasive breast malig-
nancies, respectively [98].

FIGURE 3. Latero-Medial (LM) view [92].

FIGURE 4. Medio-Lateral (ML) view [93].

B. IMAGE CROPPING
Image cropping procedures are used by deep learning models
to extract regions of interests (ROIs) and also to remove noisy
regions from an image. Some studies have used segmented
ROIs to reduce the computation of the CNNs by reducing
image regions that may not benefit the desired task. While
several studies have used the manual approach of cropping
using ground truth data [21], the approaches used have been
either completely automated or semi-automated. Another
demand requiring image cropping is based on the task of
data preparation of images before they are served as input
into learning models. Image data may probably be centred by
subtracting the per-channel mean pixel values calculated on
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FIGURE 5. Normal mammogram [94].

FIGURE 6. Mammogram with benign [95].

FIGURE 7. Mammogram with malignant [95].

the training dataset. The manual method is not as effective
and supportive of the classification producers of learning
models based on some human error prone techniques applied.
For instance, in [54] the tumors in the DDSM dataset are
labelled with a red contour and accordingly, these contours

FIGURE 8. Breast tissue with malignant masses [96].

FIGURE 9. Breast tissue with calcification [97].

FIGURE 10. Breast tissue with architectural distortions [98].

are determined manually by examining the pixel values of
the tumor and using them to extract the region. In addition,
the manual methods of cropping images are very subjective,
and lead to a lot of misinterpretation if the region of inter-
est (ROI) is not extracted accurately. Similarly, there exist
some semi-automatic segmentation algorithms with apprec-
iable segmentation accuracy in the literature. However, these
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TABLE 1. Parameters and hyperparameters used in CNN [101].

FIGURE 11. Breast tissue with asymmetric shape [99].

techniques are computationally expensive and involve human
intervention. Automatic image cropping is of great impor-
tance for improving the visual quality of images [33] with
existing methods typically repurposing classifiers to perform
cropping.

In digital mammography, locating an accurate, robust and
efficient breast region segmentation technique remains a
challenging problem [45]. Since digital mammography is
available in large sizes, there is always a need to crop them
into regulated sizes to accommodate their use as input into
deep learning models [21]. Hence the need for algorithms to
operate in order to identify the meaningful parts of images
and discard unwanted area from images so as to keep the
focus on important contents of images [100]. Some of the
most used croppings approaches are the thresholdingmethod,
region based segmentation methods, region growing, region
splitting and merging, contour-based methods, clustering
based methods and model-based methods.

C. ARCHITECTURES OF SOME CONVOLUTION
NEURAL NETWORK
The term convolutional neural network, abbreviated as CNN,
is a deep learning model, similar to the basic neural network,
and heavily used in computer vision for detection and classifi-
cation tasks. CNN has been widely used for face recognition,

object detection, image classification, and general pattern
recognition. When it traverses in the forward direction, it is
considered to be training and forward propagating, the oppo-
site is the backward propagation used for adjusting the param-
eters of the model.

CNNmodel has two categories of values: hyperparameters
and parameters. Hyperparameters are variables which may be
manually selected and tuned before training the model, while
the parameter variable is automatically optimized during the
training process. The effectiveness of a CNN model largely
depends on how well its parameters have been optimized.
Table 1 lists the parameters and hyperparameters used in
CNN.

There are six different layers in CNN namely: input layer,
convolutional layer (usually a combination of convolutional
and activation function, e.g. ReLU), pooling layer, fully
connected (FC) layer, softmax/logistic layer (classification
layer), and output layer. Figure 13 illustrates a typical archi-
tecture and the usage of some parameters, and captures most
layers of a deep learning model (CNN).

Input layer: This layer allows for input data in the form
of images, modeled by a three-dimensional matrix to be
prepared as input into the learning model. These three dimen-
sions consist of the height (h), width (w), and the depth (d) or
the number of channels, denoted by W × H × D. Let us
assume we have an image of size 32 × 32 with a depth
of 1, converting our matrix to vector will result to 1024. It is
this vector that will serve as input (representing the image)
into the model. If, for instance, we want to train our model
with 500 images, the dimension of our input will then be
(32, 32, 500).

Convolutional layer: This layer is used for performing the
computational task known as convo-operation and contains
ReLU activation. This operation allows for the extraction of
features from the images passed in as input. Similarly, this
operation is usually a dot multiplication of filters and weights
until the operations are repeated over the entire image. The
output will be the input of another convolutional layer. The
convo-operation is a computation that convolves each image
with filters to output some feature maps having the form
W × H × D. For instance, the feature map for layer 2 can
be computed as follows: W2 = H2 = (W1-F+2P) /S+1, S is
the number of strides, D2 = F (filter), and P is the number
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FIGURE 12. (a). Focal retraction 12 (b). Incipient masses (c). Spiculated [76].

FIGURE 13. A sample CNN model consisting of the five layers and some parameters [101].

of zero paddings. For each feature map, a non-linear activa-
tion function is applied (e.g. Sigmoid, ReLU). A non-linear
activation function leaves the size of the volume unchanged
(W2 × H2 × D2) [14].

Pooling layer: This layer is positioned just after the con-
volutional layer. It is used for scaling down the output from
the convolutional layer. Usually, the maximum or average
pooling operation is applied here.

Fully connected layer involves weights, biases, and neu-
rons. It connects neurons in one layer to neurons in another
layer. It is used to classify images between different cate-
gories by training.

Loss function (Softmax or Logistic layer) also referred
to as the classification layer, is the last layer of CNN and is
placed immediately after the fully connected layer. Either the
softmax or logistic operations which are multi-classification
and binary classification respectively may be used.

Output layer contains the label which is in the form of
one-hot encoded. The output may be a probability of classes
that best describes the image or single class like normal,
benign, or malignant.

Both pre-trained (whose pre-trained weights are usually
shared by deep learning libraries, such as TensorFlow, Keras

and PyTorch) and un-trained deep learning in models exist for
application to different tasks. These networks can be adapted
and even fine-tuned based on the need at hand. Such existing
models may be harnessed from community repository (pop-
ularly called a model zoo) storing models and parameters
in an adaptable format [103]. Meanwhile, the dataset used
on these models is usually partitioned into three: training
data, validation data, and testing data. Training the model
is carried out with the training set, a validation set is used
for validating the model after some successive trainings, and
the test dataset is used to evaluate the trained and validated
model. The results and performances of the trained model are
generated using the test dataset. When the network is being
trained, loss values are calculated via forward propagation,
and learnable parameters are fine-tuned through the back-
propagation procedure [101]. The strength of a deep learning
model (trained and untrained) mostly depends on the depth
(or the number of layers) of its architecture. In the trained
model the choice of optimal parameters and hyperparameters
also influences the computational power of architecture.

In some cases, needing the application of CNNmodel, it is
advisable to use a trained model rather than training from
scratch [104]. However, one can intelligently learn from the
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TABLE 2. Summary of some CNN architecture used for mammography.

related model if a new one must be built from scratch. The
commonly used pre-trained CNNs architectures for mam-
mography are Alex-Net, VGG16, ResNet50 and GoogLeNet
[99]. We shall, therefore, review the peculiarities of these
architectures, highlighting their pros and cons. Table 2 sum-
marizes these details.

Most of these deep CNN architectures were designed for
a 1000 class classification task. However, new models are
usually designed after them by merely adapting them to the
required task (e.g. classification) and modifying the last three
layers.

IV. DATASETS AND APPROACHES
In this section, we present a review of the computational
approaches and methods applied in the studies surveyed.
Meanwhile, we first discuss publicly available medical image
datasets (mammography) that are available for research in the
area considered by the literature reviewed. Also, a summary
of popular data/image preprocessing techniques is discussed.

A. APPROACHES FOR SELECTION OF STUDIES
Journals were searched from various online archives like
https://arxiv.org/, https://ieeexplore.ieee.org, PubMed, and
https://hal.inria.fr/. For instance, we obtained 39 publica-
tions from the Scopus database and 44 publications from
the IEEE Xplore database. Publications from the Scopus
database consisted of 18 Conference Papers, 19 Journal pub-
lications and 1 Book Chapter, while that downloaded from
the IEEE Xplore consisted of 34 Conference Papers, 7 Jour-
nal publications and 3 Book Chapters. However, we had to
combine all publications retrieved from the databases listed
above to eliminate duplications. The resulting findings from
the harmonized publications formed the basis for the findings
and discussions in this study. Our approach for the selection
of papers reviewed is listed in Table 3.

Studies focused on detection or characterization of archi-
tectural distortion and preprocessing of digital mammogra-
phy within the period under review revealed an interesting
trend. We discovered that most of the publications were made

VOLUME 8, 2020 148657



O. N. Oyelade, A. E. Ezugwu: State-of-the-Art Survey on Deep Learning Methods for Detection of AD

TABLE 3. Paper/journal selection for the systematic review.

in Conferences, followed by those published as a full article
in Journals, and only a few appear as Book Chapters. For
instance, we looked into the publications on the IEEE Xplore
database, and we found that out of the 44 documents relating
to the focus of this study, 34 were published as Conference
papers, seven as Articles, while three appear as Book Chap-
ters. Figures 15a-b and 16a-b present charts illustrating the
distribution of these publications across the period consid-
ered: 2009-2020.

Furthermore, an attempt was made to uncover interest-
ing bibliometric analysis of the publications relating to the
detection or characterization of architectural distortions in
mammography. This led to the use of ScientoPy – a Python
script for scientometrics literature review (ScientoPy).

The outcome of the study to analyze the content of pub-
lications related to the detection and/classification of breast
cancer through the identification of architectural distortion
revealed the information on the following graphs. About
38 publications were identified for the following charting
after merging and removal of duplications. First, we observed
a trend of the choice of Journals/Publishers by the authors,
as shown in Figure 17. Prior to the year 2018, a good number
of the publications were published in Progress in Biomedical
Optics and Imaging, Journal of Computer Assisted Radiology
and Lecture Notes in Computer Science. However, from the
year 2018 to 2019, we discovered that only two journals
published documents relating to the detection/classification
of architectural distortion. These journals are Biomedical
Signal Processing and Control and the Journal of Medical
Systems. This shift in the place of publication could indicate
the attention such journals gave to the area in concern.

A careful analysis of the published documents within the
period under review revealed that not much interest had been
directed towards the application of deep learning models to
the task of detecting AD. Figure 18 shows that the use of the
Gabor Filter dominated methods used by researchers from
the year 2009 through 2018. Similarly, Figure 19, which
shows a Word Cloud analysis, also proved the truth of this
assertion. This further confirms the fact that newmethods and
approaches need to be considered for the task of detection of
architectural distortion in mammography.

Our bibliometric analysis also revealed the level of atten-
tion generated by researchers across countries in the issue

of improving computational approaches for the detection of
architectural distortion. We discovered that India and China
top the list of researchers/countries which have invested
research into it. Notably, between the years 2011-2020 and
2009-2018, there have been progressive publications coming
from India and China, respectively. Although a large volume
of research efforts came from Canada, it was short-lived as
seen from its distribution from 2009 to 2014. Meanwhile,
recent publications show that researchers from the United
States are now gaining interest in the domain while India still
maintains the lead.We also discovered that only a few authors
were considered to have understood the relevance of applying
computational methods to the detection of architectural dis-
tortion in mammography. Figures 20 and 21 illustrate these
assertions.

In Figure 22 below, we present the graph showing the total
number of papers/studies reviewed according to their year of
publication. This represents a combined list of publications
across the online databases visited after elimination of dupli-
cated studies.

B. MAMMOGRAPHIC DATASETS
In mammography, the most available databases which are
publicly accessible are the mammographic image analysis
society (MIAS) database [108] and the digital database for
screening mammography (DDSM) [65], INbreast database,
breast cancer digital repository (BCDR), and image retrieval
in medical applications (IRMA). We present a summary
of the necessary information about each of these datasets
in Table 4.

C. DATA/IMAGE PREPROCESSING AND AUGMENTATION
TECHNIQUES
Due to the noise and lack of sharpness in some images, image
preprocessing practices are employed. Methods such as con-
trast enhancement and image breast segmentation are used
for such purpose. This process helps to remove the irrele-
vant background area, labels, artefacts, and pectoral muscles.
The use of adaptive histogram equalization (AHE), called
contrast limited adaptive histogram equalization (CLAHE),
to improve the contrast in images is a technique employed.
Another method is the use of a median filter for de-noising
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FIGURE 14. A sample CNN architecture highlighting the layers discussed above [102].

TABLE 4. List of mammography datasets used for experimentation.

and un-sharp masking to smoothen the images. This is
achieved by image transformations such as vertical and hor-
izontal flip, rotation at different degrees, and addition of
Gaussian noise.

We observed that there are variations in the papers sur-
veyed concerning the manner images are passed as input
into their respective models. Some passed whole images into
their model while others used patches. Patches or regions of
interest (ROIs) are extracted from whole images using either
a manual or automated approach. The manual approach sim-
ply relies on annotations accompanying the image datasets.
At the same time, the procedure for automatic extraction
and segmentation task for ROIs is done using threshold
and region-based techniques. Image segmentation is used
to divide an image into parts having similar features and

properties [56]. In addition to those techniques used in
automated ROIs extraction, there are deep learning models
like R-CNN, Faster R-CNN and their variants that serve this
purpose. The uses of the variant of R-CNN have gained
attention among research works which major in the char-
acterization of masses and calcification. Often, the ROIs
extracted are of variable sizes or fixed size. Standard sizes
are 64 × 64, 128 × 128, 299 × 299, and 512 × 512 pixels.
Whole images are usually of size 1024 × 1024. The ben-
efit of extracting ROIs is to centre the abnormality area in
patches and to limit the search for abnormalities without any
undue influence from the background or unwanted regions
[73]. Meanwhile, we found interesting an image/data pre-
processing approach wholly designed for supporting models
detecting architectural distortions. The approach first detects

VOLUME 8, 2020 148659



O. N. Oyelade, A. E. Ezugwu: State-of-the-Art Survey on Deep Learning Methods for Detection of AD

FIGURE 15. (a). Number of papers in each year 2009-2020 in IEEE Xplore. (b). Number of papers in each
year 2009-2020 in Scopus.

the mammographic region of interest by removing pectoral
muscle, and then applies some preprocessing operations as
well as applying Otsu’s thresholding [109].

Often, data augmentation technique has been employed
to enhance the performance of deep learning models. Both
standard generative adversarial networks (GANs) approaches
have been used to synthesize data to augment available
datasets which may not meet the requirement for applying
detection models. For instance, Ben-Ari, et al. [9] improved
their training set by image augmentation conducted on posi-
tive samples with five random shifts, three rotations and two
flips (total of 10 augmentations).

D. MODELS APPLIED TO DETECTION OF
ARCHITECTURAL DISTORTION
Deep learning models are often presented and designed
as CNN. The design of this network architecture largely
depends on the skillful and artistic selection of model
parameters/hyperparameters (decay and learning rate), sev-
eral epochs, the size of the dataset, and depth of the architec-
ture (the more layers, the higher the tendency to extract more
features, thereby increasing accuracy). For instance, [73]
observed that using step decay rate while reducing learn-
ing rate by some percentage after a set number of train-
ing epochs increased the performance of characterization of
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FIGURE 16. (a). Categories (conference, books, article/journal) of papers from 2009-2020 in IEEE Xplore. (b).
Categories (conference, books, article/journal) of papers from 2009-2020 in Scopus.

abnormalities in mammography. Practically, a typical net-
work may consist of five convolution layers, three fully con-
nected layers and a SoftMax layer (for classification), and
fully connected layer. Another practice among deep learning
researchers characterizing abnormalities in breast images is
the use of a technique known as transfer learning which
allows the import of training parameters achieved in another
model into a similar model. We observed from the literature
that classification techniques like SVM, KNN, ANN, and
Softmax are predominantly used for both binary and multi-
class classification.

The Gabor filter is a sinusoidally modulated Gaussian
function and can detect local line components and angle
components in the image. Gabor function is the product of
a 2D Gaussian and a complex exponential function as shown
below:

gθ,λ,σ1,σ2(x,y)

= exp−1/2{x y}{Mx y}T exp{
jπ
λ
(x cos θ + y sin θ )

The Gabor function g θ (x, y) has an anisotropic shape,
and the width of the filter function in the short axis direction
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FIGURE 17. Distribution of publications across Journals.

could be adjusted by changing the standard deviation σ ,
the space aspect ratio γ , and the wavelength. The approach of
architectural detection distortions using Gabor filter requires
the use of some of the filters in a layeredmanner. For instance,
a study that used an adaptive Gabor filter for analyzing the
mammary gland structure was able to detect the distorted
region of the mammary gland as an initial candidate using
a concentration index followed by binarization and labeling.
A similar application of Gabor filter to the detection of archi-
tectural distortions identified the best filter that matched the
mammary gland structure pixel-by-pixel from a three Gabor
filter system. After detecting the mammary gland, enhance-
ment of the concentrated region and false positive reduction
is performed.

E. PERFORMANCE METRICS
Performance metrics are very necessary for computational
approaches for the sole aim of measuring advances made in
any research interest. For this reason, we reviewed several
commonly used popular evaluation metrics. The following
performance metrics are widely used when measuring the
performance of models detecting architectural distortions:

Precision

=
TP

(TP+ FP)
Recall

=
TP

(TP+ FN )
Precision

=
TP

(TP+ FP)
Selectivity

= TNR =
TN

(TN + FP)
Accuracy

=
TP+ TN

(TP+ TN + FP+ FN )
F −Measure

=
(2 ∗ Precision ∗ Recall)
(Precision+ Recall)

ErrorRate

= 1− Accuracy

Positive predictive value (PPV )

=
TP

(FP+ TP)
Negative predictive value (NPV )

=
TN

(FN + TN )
Matthews correlation coefficient (MCC)

=
TP ∗ TN − FP ∗ FN

√
(TP+ FP)+ (TP+ FN )+ (TN + FP)+ (TN + FN )

Recall, also referred to as True Positive Rate (TPR), mea-
sures the percentage of the positive group that was correctly
predicted to be positive by the model. The F-Measure or
F1-score is a combination of precision and recall and β and
is used to adjust the importance of precision versus recall.
Accuracy alone is usually insufficient to demonstrate the
advancement attained by a model or classifier and is some-
times used with error rate to evaluate classification results.
MCC provides a more relevant assessment compared to accu-
racy. Selectivity, also called True Negative Rate (TNR), mea-
sures the percentage of the negative group that was correctly
predicted to be negative. Precision measures the percentage
of the positively labeled samples that are actually positive.
The recall does not consider the number of negative samples
that are misclassified as positive, which can be problematic
in problems containing imbalanced class data with many
negative samples. At the same time, precision provides no
insight into the number of samples from the positive group
that were mislabeled as negative. MCC provides informa-
tion about the negative case sample detected that is unbal-
anced compared with the positive sample detected. On the
other hand, PPV is the number of the correct detected posi-
tive cases overall detected positive cases, while NPV is the
number of the true negative cases detected overall negative
cases.
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FIGURE 18. Evolution of the use of keywords in published documents from 2009-2020.

V. COMPARISON OF COMPUTATIONAL EXPERIMENTS
AND RESULTS
There were sixty-two (62) eligible studies based on the liter-
ature search strategy described in Table 4.

A. EXPERIMENTATION ENVIRONMENT AND
PERFORMANCE METRICS OF REVIEWED
STUDIES
Experimentations carried out using the Gabor Filter tech-
nique were done in lower computational resources compared
to experimentations done with deep learning techniques. For
instance, a study [106] using Gabor filter technique applied
to 158 prior mammography images took about 6 minutes
per image on a Dell Precision PWS 490 workstation with
Quad Intel Xeon processors operating at 3.0 GHz, with
12 GB of RAM, whereas more computational resources like
high demand for CPU and GPU are required to run similar
experiments using deep learning technique. One of the main
contributors to the steep rise of deep learning has been the use
of GPU and computing libraries like Tensor, Keras, CUDA,
and OpenCL. GPUs are highly parallel computing engines,
which have an order of magnitude more execution threads
than central processing units (CPUs). With current hardware,
deep learning on GPUs is typically 10 to 30 times faster than
on CPUs. For instance, the study in [9] which used a deep
learning approach was carried out on the i7 Intel CPU with
64G RAM and TitanX GPU. This demonstrates the fact that
deep learning enjoys the availability of advanced techniques
for training large-scale deep learning models.

Performance measurements for the models described
above are mostly compared using metrics such as sensitivity,

specificity, accuracy, area under curve (AUC) and false posi-
tive rates (FPR). Our review of different studies revealed that
FPR is mostly used for this task. The dominant use of FPR as
a metric shows that the human limitation usually encountered
in the interpretation of mammography highlights the subtlety
in detecting architectural distortions. The use of accuracy,
sensitivity, and specificity as performance measurement met-
rics is necessitated by the need for researchers to compare the
performance of their approaches/models with similar works.
However, we observed that what is important is a research
breakthrough which can characterize architectural distortions
in any image media sufficiently: mammography, tomosyn-
thesis and ultrasound. This, we believe, will widely promote
the adoption of computer vision in detecting abnormalities in
medical images.

B. EVALUATION OF THE PERFORMANCES OF
REVIEWED STUDIES
In this section, we shall carry out an evaluation and com-
parison of the performances of all the techniques/approaches
adopted by reviewed studies. One of the objectives of this
study is to review papers detecting the presence of archi-
tectural diction in mammography using deep learning mod-
els. However, we decided to include similar studies that
approached the problem using different techniques from
deep learning. The summary of our findings is detailed
in Table 5.

We observed that the Gabor filter approach is capable of
yielding high positive rates (FPR) instead of lowering it.
Unfortunately, the approach has seriously dominated studies
aimed at detecting architectural distortions in mammography
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FIGURE 19. WordCloud distribution of authors’ and index keywords in the publications from 2009-2020.

FIGURE 20. Distribution of published documents across different countries from 2009-2020.

despite advances made in deep learning models since the
year 2012. Could the computational resource or algorithm
design be the reason for this? Recent studies focusing on
the use of CNN contradicts such school of thought. Another
method used in detecting AD is the 2D Fourier Transform
which appears to be least effective and least used, and so
also the use of fuzzy-based detection models are least used.
However, it seems to have performed well in [110] with
91.67% accuracy. Similarly, a study with a closer but better
performance of 93% accuracy is that which used the window-
based approach, an approach that is rarely used. However,
studies which adopted deep learning technique in detecting

architectural distortions appeared to be very promising espe-
cially when used alongside some performance improvement
measures like data augmentation. The research in [21], which
was based on deep learning (using CNN+ data augmenta-
tion), yielded the best performance in detecting architectural
distortions at an accuracy of 99.4%. This reveals that much
can be achieved in the characterization of an abnormality
(architectural distortions) in medical images when further
research and efforts are channeled into the application of
deep learning models. We also observed that deep learn-
ing studies which were carried out without the use of per-
formance enhancement practices like normalization, image
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FIGURE 21. Distribution of author’s publication rate on the subject of architectural distortions using
computational approaches.

FIGURE 22. Distribution of studies reviewed on architectural distortions in the last
one decade between 2009-2020.

preprocessing, and data augmentation performed lower than
similar models which leveraged such performance enhance-
ment practices. We also discovered that the use of a large
number of inputs in the extraction of feature sets is more pro-
nounced in deep learning models compared to Gabor Filter
and 2D Fourier Transform techniques.

A summary of the comparison of the performances of
the studies reviewed is presented in Figures 23 and 24.
In Figure 23, we graphed a breakdown of studies on archi-
tectural distortions included in this survey, grouped into var-
ious techniques ranging from 2009-2020. On the other hand,
Figure 24 presents a comparison of the use of classifiers,

image preprocessing method, and heterogeneity of datasets
in studies on architectural distortions included in this survey
ranging from 2009-2020. Finally, Table 6 outlines the com-
parison of widely used mammogram databases in studies on
architectural distortions reviewed in this survey ranging from
2009-2020.

VI. DISCUSSION
In this section, we shall focus our discussion on the findings
and challenges discovered in the studies reviewed in search of
advances made in detecting architectural distortions in breast
images.
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FIGURE 23. A breakdown of studies using different approaches and techniques in detection of architectural distortions which were included in
this survey, and grouped into various techniques from 2009-2020.

A. OUR FINDINGS
Research has shown that the subtle appearance presented
by architectural distortions in the breast tissues accounts
for 12% - 45% of breast cancers missed when screening
mammography [120]. This is often overlooked or misin-
terpreted in screening mammography due to the deficiency
of human physicians. To overcome these limitations, our
survey revealed that several computational approaches have
attempted to mitigate this, yet with minimal achievement and
restricting their clinical use. We therefore seek to point out
some practices that characterized the approaches and studies
reviewed.

The DDSM and MIAS databases were observed to
have gained extensive usage in most studies we surveyed.
These are digitalized images from mammography and do
not include other forms of medical imaging like MRI,

tomosynthesis, and ultrasound which may also help to has-
ten the discovery of architectural diction in breast tissues.
We therefore advocate the development of approaches, deep
learning models in particular, which can efficiently extract
features of architectural distortions from all forms of med-
ical images used in breast imaging. Secondly, we investi-
gated the input pattern used in those techniques and found
that the use of ROIs-based input rather than whole mam-
mography/images was a widely adopted practice. This is
necessary to reduce the search area of the detection algo-
rithm. Also, the approach of using ROIs is widely reported
to have enhanced performance of feature detection and
image classification procedure. We, at this moment, suggest
the use of patches since architectural distortion is easily
detected when ROIs are used rather than whole images [110].
Meanwhile, the advantages of serving whole images into
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FIGURE 24. A comparison of the use of classifiers, image preprocessing technique, and heterogeneity of datasets in reviewed studies on
architectural distortions ranging from 2009-2020.

detection models may also be considered. Although we
observed that manual cropping of images seems to dominate
most studies, however deep learning models supporting auto-
matic image cropping for regions of interest and segmentation
are pervasive.

We also found that most studies embrace different
approaches like filter response, search for linear structures
or employing texture features, all of which are known to
yield high false-positive rates. This, therefore, may advance
the need for research into deep learning models which have
demonstrated a very positive performance compared to the
traditional approaches compared in Table 2. In addition to
the adoption of deep learning models for feature extraction,
we observed that SVM classifier (for binary classification:
having architectural distortions or not) dominated most of
the studies considered. However, some multi-class classifiers
and even quadratic discriminant analyses were used. Though
SVM has performed very well in binary classification we,
however, advocate the use of multi-classifier to include other
significant findings (likemicrocalcification, asymmetries and
masses) in the characterization of abnormalities in breast
tissues. Therefore, we conclude this section by noting that
very few studies have taken advantage of advances in deep
learning to advance the detection of architectural distortions
in mammography.

B. CHALLENGES OF APPROACHES USED IN DETECTING
ARCHITECTURAL DISTORTIONS
Architectural distortions are defined as distorted parenchyma
with no definite mass, including thin straight lines or spic-
ulations radiating from a point, and focal retraction, distor-
tions, or straightening at the anterior or posterior edge of the
parenchyma [119]. The detection of architectural distortion is
challenging to computational models andmuchmore to Radi-
ologists because such images present a low visual signature
and ambiguous boundaries. Therefore, there is a need for an
improved computational solution to embrace approaches and
innovation capable of tackling this challenge.

The following are other challenges that may promote
advances in the task of detection of architectural distortions
from medical images. Unavailability of large datasets of
architectural distortion is a significant setback to deep learn-
ing models designed to detect the abnormality. This, how-
ever, may not signify a serious problem considering the wide
acceptance and performance enhancement that data augmen-
tation provides. Another challenge is the lack of labeled and
annotated data which has become a limiting factor in many
medical applications. For instance, the use of a few inputs
used in Gabor filters methods has proven that the methods
need to be tested with larger datasets [76] to ensure that
high positive rates are reduced. Mammography is a widely
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TABLE 5. A summary of the techniques and findings of studies reporting on architectural distortions (AD) in breast cancer detection.
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TABLE 5. (continued) A summary of the techniques and findings of studies reporting on architectural distortions (AD) in breast cancer detection.
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TABLE 5. (continued) A summary of the techniques and findings of studies reporting on architectural distortions (AD) in breast cancer detection.
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TABLE 6. Comparison of widely used mammogram databases in studies on architectural distortions reviewed in this survey ranging from 2009-2020.

used technique to diagnose breast cancer. Nevertheless, due
to the nature of these images, superimposition of tissues may
lead to obscured lesions or false alarms. Therefore, digital
breast tomosynthesis (DBT) presents potentials to overcome
this limitation [27]. But we discovered that no serious deep
learning model had been proposed in tackling this problem.
Furthermore, recent deep learning models have not been
able to address the issue of accurately classifying images of
breast biopsy tissue stained with hematoxylin and eosin into
different histological grades.

VII. CONCLUSION
The current study focused on reviewing and discover-
ing advances, practices and challenges of techniques and
approaches adopted to the task of characterization of archi-
tectural diction from mammography. We pursued this course
by surveying studies in the last decade – between the years
2009 and 2020. We discovered that approaches like Gabor
Filter, window-based method, fuzzy logic, deep learning
models, mathematic models and 2D Fourier transform in
polar coordinates had been widely used. We discovered that
minimal effort had been channeled towards applying deep
learning technique to the task of detecting architectural dis-
tortion. In contrast, there are several studies which have
successfully adapted deep learning models in characterizing
microcalcifications, masses, and asymmetries. Investigations
revealed that the subtle nature and rare-occurrence of archi-
tectural distortion could have dictated this. We note that since
early diagnosis of breast cancer is made possible through
the detection of architectural distortions, this should be a
sufficient motivation to increase research in this direction.
This research, therefore, seeks to advance the adoption of
computer vision in isolating the cases of architectural diction
in digital medical images.
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